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Population interaction structure and the coexistence of bacterial 
strains playing ‘rock–paper–scissors’

Robert A. Laird

R. A. Laird (robert.laird@uleth.ca), Dept of Biological Sciences, Univ. of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.

The simplest example of non-transitive competition is the game rock–paper–scissors (RPS), which exhibits characteristic 
cyclic strategy replacement: paper beats rock, which in turn beats scissors, which in turn beats paper. In addition to its 
familiar use in understanding human decision-making, rock–paper–scissors is also played in many biological systems. 
Among other reasons, this is important because it potentially provides a mechanism whereby species- or strain coexistence 
can occur in the face of intense competition. Kerr et al. (2002, Nature 418: 171–174) use complementary experiments 
and simulations to show that RPS-playing toxic, resistant, and susceptible E. coli bacteria can coexist when interactions 
between the strains are spatially explicit. This raises the question of whether limited interactions associated with space 
are sufficient to allow strain coexistence, or whether space per se is crucial. I approach this question by extending 
the Kerr et al. model to include different (aspatial) population network structures with the same degree distributions 
as corresponding spatial lattice models. I show that the coexistence that occurs for some parameter combinations 
when simulated bacterial strains compete on lattices is absent when they compete on random regular graphs. Further, 
considering small-world networks of intermediate ‘quenched randomness’ between lattices and random regular graphs, 
I show that only small deviations from pure spatial interactions are sufficient to prevent strain coexistence. These results 
emphasize the explicit role of space, rather than merely limited interactions, as being decisive in allowing the coexistence 
of toxic, resistant, and susceptible strains in this model system. 

One of the main goals of community ecology is to determine 
how species or strains can coexist in the face of intense com-
petition (Wilson 1990, Tokeshi 1999, Chesson 2000). Most 
proposed mechanisms of coexistence involve the mitigation 
of competition, for example by niche differentiation or  
disturbance. In contrast, here I discuss a situation where 
competition – more specifically, non-transitive competition 
– is not an obstacle that must be overcome, but rather is a 
promoter of coexistence in its own right.

The simplest example of non-transitive competition is the 
game of rock–paper–scissors (RPS), in which rock is covered 
by paper, paper is cut by scissors, and scissors is crushed  
by rock (R → P → S → R). If the strategies in this game rep-
resent different species or strains, it is immediately obvious 
how this cyclic competition structure could promote  
coexistence, because although competition may be intense 
between pairs of strategies, none is superior or inferior to any 
other at the community level.

In addition to a rich literature exploring the theoretical 
consequences of non-transitive competition (Gilpin 1975, 
May and Leonard 1975, Karlson and Jackson 1981, Tainaka 
1988, 2001, Durrett and Levin 1997, 1998, Huisman and 
Weissing 1999, 2001b, Huisman et  al. 2001, Frean and 
Abraham 2001, Czárán et  al. 2002, Laird and Schamp  
2006, 2008, 2009, Rojas-Echenique and Allesina 2011), 

there is a growing number of examples of non-transitive 
coexistence in a variety of biological systems, including 
among colour/behavioural morphs in lizards (Sinervo and 
Lively 1996, Sinervo et  al. 2007), benthic invertebrates  
(Buss and Jackson 1979, Buss 1980, Jackson 1983), algae 
(Huisman and Weissing 2001a), plants (Lankau and Strauss 
2007), and bacteria (Kerr et  al. 2002, Kirkup and Riley 
2004). The latter example, in which bacteria play RPS, is my 
focus here.

Kerr et  al. (2002) deploy complementary simulation 
models and experiments to describe non-transitive coexis-
tence of colicinogenic (C), susceptible (S), and resistant (R) 
strains of Escherichia coli. The C strain produces colicin,  
a toxin to which S is sensitive but R is not. In pairwise  
competition, then, R outcompetes C due to a growth-rate 
advantage, which stems from R not having to pay the meta-
bolic cost to produce colicin. Similarly, S outcompetes R 
because S does not pay the cost of toxicity or resistance. 
Finally, C outcompetes S through the direct action of toxic-
ity. This closes the non-transitive loop (C → R → S → C), 
leading to the potential for strain coexistence.

Interestingly, however, Kerr et al. (2002) show that this 
CSR scenario leads to strain coexistence in spatially struc-
tured populations (cultured on static agar plates), but not 
in well-mixed populations (cultured on experimentally 
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mixed plates or in a liquid medium). Their lattice-based 
simulation models also exhibit this strong spatial depen-
dence (at least for certain parameter values; other parameter 
values lead to monocultures in the models even when space 
is explicit and the criteria for non-transitive replacement 
among C, S and R are met). In both the experimental and 
simulated spatial systems, local clumps of strains form 
spontaneously and follow each other around their respec-
tive competitive arenas in a ‘balanced chase’ (Kerr et  al. 
2002). In the well-mixed systems, the omnipresence of  
C leads to the rapid extinction of S followed shortly by  
the extinction of C itself (but also see Müller and Gallas 
2010, who show that the winning strain in well-mixed sys-
tems is context dependent).

These patterns raise the question of what facet of spatial 
competition is critical in allowing the coexistence of non-
transitively competing strains of E. coli. Specifically, does 
spatial structure promote coexistence merely because it 
reduces the number of neighbours with which individuals 
interact, allowing members of each strain to effectively  
‘hide’ from their respective enemies? Or, alternatively, do the 
higher-order properties of spatial networks – in particular, 
their high average path length (‘degrees of separation’) and 
clustering (‘cliquishness’; Watts and Strogatz 1998) – also 
play a role by promoting the spontaneous emergence of local 
patches of strains?

Szolnoki and Szabó (2004) and Szabó et  al. (2004), 
building on seminal work on ‘small-world networks’ by 
Watts and Strogatz (1998), provide preliminary answers to 
these questions for a simplified RPS game in which the 
replacement rates between the pairs of strategies are identi-
cal. In this situation, spatial lattice models predict station-
ary strategy concentrations of R, P and S of 1/3 (Szabó 
et al. 2004). However, when the spatial nature of the inter-
action structure is relaxed by replacing at least a critical 
number of local neighbourhood connections with random 
long-range connections, oscillatory dynamics occur  
spontaneously (Szabó et al. 2004). The magnitude of these 
oscillations increases as the population interaction struc-
ture gets farther away from a spatial lattice and more like a 
random regular graph. Thus, in finite populations, extinc-
tion leading to monoculture should be more likely when 
spatial interactions are gradually eliminated while preserv-
ing the degree distribution of the interaction network  
(i.e. the number of other individuals with which an  
individual interacts). In other words, spatially explicit 
interactions are important for strategy coexistence in the 
simplified RPS game, beyond their effects in limiting  
the number of neighbours with which a given individual 
interacts.

Here, I apply a similar approach to the CSR model. For 
lattices with four different degrees (i.e. edges per node), I 
confirm that spatial structure leads to strain coexistence for 
certain model parameters. I then show that coexistence is not 
possible in random regular graphs with the same degree dis-
tributions as their lattice counterparts. Finally, I use regular 
small-world networks with the same degree distributions to 
show that the transition between coexistence and monocul-
ture occurs when only small deviations from spatial popula-
tion interaction structure are introduced. These results 
emphasize the explicit role of space, rather than limited 

interactions, as being decisive in allowing the coexistence of 
C, S and R in this model system.

Methods

I describe a model that elaborates on Kerr et  al. (2002), 
which, in turn, builds on earlier models (Durrett and Levin 
1997) and empirical studies (Chao and Levin 1981). The 
methods of Szolnoki and Szabó (2004) and Szabó et  al. 
(2004) are also critical to the model’s development. Kerr 
et al.’s model matches their empirical results extraordinarily 
well, suggesting that they do a good job of capturing  
the essential elements of their system’s dynamics. With this 
in mind, I contend that insight into the original bacterial 
system can be gleaned by investigating modifications to  
their model. This guiding philosophy is important here, 
because I examine situations that are probably counter- 
factual (e.g. bacteria interacting on what are essentially social 
networks) in order to better understand why RPS coexis-
tence is possible in real situations (i.e. bacteria interacting 
with local neighbours on surfaces).

Competitive interactions are represented by graphs  
(in the graph-theoretical sense; Lieberman et  al. 2005). 
Nodes represent individuals (or, in an alternative interpre
tation, colonies), with edges connecting nodes whose inter-
action neighbourhoods overlap. Spatial systems correspond 
to lattices in which individuals interact only with their k 
nearest neighbours. I investigate the familiar von Neumann 
(k  4) and Moore (k  8) lattices as well as those where each 
individual has k  3 or k  6 neighbours. Following Kerr 
et  al. (2002), the lattices are square, with a side length of 
L  250 nodes (i.e. a total of N  L2  62 500 nodes).  
Further, the lattices have periodic boundaries to avoid  
edge effects and to ensure that every node has exactly k 
neighbours.

My general approach to investigate the role of space is to 
compare the outcome of non-transitive competition on lat-
tices with the outcome of non-transitive competition on  
networks that retain many traits of lattices (in particular the 
degree distribution) while gradually relaxing the traits cor-
responding to spatial structure. To this end, non-spatial net-
works are also investigated by severing lattice edges and 
randomly reassembling the resultant half-edges so that the 
degree distribution of the original lattice is preserved (i.e. 
every node is still connected to exactly k other nodes),  
but the higher-order spatial structure associated with lattices 
is diminished or eliminated (Fig. 1). If all the edges are sev-
ered, the resulting network is a random k-regular graph 
(hereafter a ‘random regular graph’). If only a proportion, 
Q ∈ [0, 1], of the edges are severed, the resulting network is 
also a k-regular graph, but with small-world properties (here-
after a ‘small-world network’; Watts and Strogatz 1998). 
Thus, Q represents the degree of ‘quenched randomness’ in 
the network (Szabó et  al. 2004, Szolnoki et  al. 2008).  
Further, small-world networks represent the continuum 
joining lattices (Q  0) and random regular graphs (Q  1). 
(After random regular graphs and small-world networks  
are generated algorithmically, an additional model step 
checks that they are connected; i.e. that every node is linked 
to every other node by a finite chain of intermediary nodes 
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and edges. Disconnected graphs are discarded and replaced, 
although graph connectedness is virtually certain in random 
graphs of the size investigated here.)

Each node is of one of four different flavours, allocated 
randomly and independently at the start of each model 
run: C, S, R and empty nodes. In every time-step, a node is 
selected at random. If the focal node is empty, it is ran-
domly replaced by a clone of one of its k neighbours, 
including empties (replacement by a clone of an empty 
node simply refers to the situation where colonization  
fails to occur). If the focal node is occupied, the occupant 
dies with probability dC, dS, or dR for C-, S- and R-nodes, 
respectively, and the node becomes empty (Kerr et  al. 
2002). The death probabilities dC and dR are constants. 
However, dS  dS0  tfC, where dS0 is the constant ‘baseline’ 
death probability of S in the absence of C neighbours, fC is 
the fraction of C neighbours linked to the focal S, and t is 
the intensity of toxicity of these C neighbours. Mean- 
field analysis indicates that dS0  dR  dC  (dS0  t)/
(1  t) to ensure non-transitivity (Kerr et  al. 2002).  
Following Kerr et  al. (2002) and others (Károlyi et  al.  

2005, Müller and Gallas 2010), I consider dC  1/3, 
dS0  1/4 for a wide range of combinations of dR and t that 
satisfy the non-transitivity criterion, and which ensure that 
all probabilities remain between 0 and 1.

N time-steps represent a single model generation (‘epoch’ 
in Kerr et al. 2002), such that every node is the focal node 
once per generation, on average. (Naturally the realized 
number of times that a node is the focal node will follow a 
Poisson distribution.) The models are run until monoculture 
or until a ‘coexistence criterion’ is met. The coexistence  
criterion is typically 104 generations (105 generations in the 
case of small-world networks in which the trajectory  
towards coexistence or monoculture often takes longer to 
resolve). There is no mutation (cf. Kerr et al.).

Lattice models are run first and recapitulate the results 
of Kerr et al. (2002). That is, there are regions of parameter 
space that allow CSR coexistence in the spatial arena.  
Simulations on random regular graphs are run next and,  
by contrast, exhibit no coexistence for any of the para
meter values examined. Therefore, for a given set of para
meter values that allows for coexistence in the spatial 

Figure 1. Example graphs representing population interaction structure. (a) A lattice with every individual (node) having exactly  
k  4 neighbours (nodes connected with edges to the focal node). Boundaries are periodic; the top row is connected to the bottom row  
and the left column is connected to the right column. (b) The same lattice in (a), with nodes rearranged to facilitate comparison with  
(c) and (d). (c) Small-world network created from (b) by randomly severing Q  1/8 of its edges and randomly rewiring the resulting  
half-edges. (d) Random regular graph created from (b) by randomly severing all its edges and randomly rewiring the resulting half-edges. 
These graphs have N  42  16 nodes; the actual graphs used in the models in this study have N  2502  62 500 nodes.
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Thus, at least some degree of ‘spaciness’ is a necessary, 
albeit not always a sufficient condition to allow for the  
coexistence of C, S and R in this model. Figure 5 shows the 
transition between coexistence and monoculture for an 
example suite of parameters for which coexistence is always 
observed in the spatial setting (i.e. the same parameters as in 
Fig. 2a). When the model is run on former lattices with  
proportion Q50 of the edges rewired, large oscillations ensure 
that monoculture and coexistence are equally likely, at  
least for the given coexistence criterion (e.g. Fig. 6). These 
oscillations are much larger than those found on the lattice 
(compare Fig. 6 with Fig. 2a).

When Q50 values are calculated for parameter combina-
tions for which lattices allow for the potential for strain  
coexistence, it is clear that relatively small departures from 
the spatial setting destroy this potential. For the parameter 
values and degree distributions examined, the odds of strain 
coexistence are already worse than 50–50 when less than  
1% of the edges in a lattice are randomly severed and reas-
sembled (Fig. 7). (This is true whether the coexistence crite-
rion is 104 or 105 generations, although only the latter is 
shown in Fig. 7).

Discussion

The role of space in promoting species or strain coexistence 
is a general problem in community ecology, and more  
specifically in the case of non-transitive competition  
(Durrett and Levin 1997, 1998, Szabó and Czárán 2001, 
Czárán et  al. 2002, Kerr et  al. 2002, Reichenbach et  al. 

setting, there is a transition to monoculture as the degree of 
quenched randomness, Q (which can be profitably thought 
of as an inverse measure of ‘spaciness’) increases from  
0 to 1. This transition is highly relevant to my purposes 
here: if the critical Q value is small (close to 0), then the 
preservation of spatial structure per se is crucial to strain 
coexistence; if the critical Q value is large (close to 1), then 
limited interactions – and not spatial structure – are suffi-
cient to promote strain coexistence in this model system. 
The critical value of Q, Q50, is defined as the maximum 
value of Q where coexistence is expected at least half the 
time, as determined by logistic regression.

Results

In lattice models, long-term coexistence is possible for  
some parameter values but not for others (Fig. 2). Where it 
is possible, cyclic dynamics are observed as clumps of C, S 
and R strains follow each other around the arena in a  
‘balanced chase’ (Kerr et al. 2002). In the parameter space 
investigated, there is a large region where coexistence lasts  
for at least 104 generations (Fig. 3). In the region where  
coexistence does not occur, the eventual winning mono
culture (C, S or R) depends on the specific parameter values 
examined (Fig. 3).

In random regular graphs, long-term coexistence does 
not occur for any of the parameter values examined (Fig. 4). 
Rather, every population examined (a total of 129 200  
replicates) exhibits a monoculture of C, S or R within 104 
generations (Fig. 4).
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Figure 2. (a, b) Example time series and (c, d) corresponding lattices (N  62 500, k  4) after 10 000 generations for two sets of  
parameter values. In both the time series and the lattices, red  C, blue  S, and green  R; in the lattices, white  empty node. (a, c) 
dC  1/3, dS0  1/4, dR  3/10, t  3/5. (b, d) dC  1/3, dS0  1/4, dR  11/40, t  2/5.
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Figure 3. Probability of strain coexistence and monoculture (for dC  1/3, dS0  1/4, and a range of values of dR and t) for competition 
on lattices with N  62 500 nodes and k  3, k   4, k   6, or k  8 neighbours per node. As shown in the legends, the colour at each 
pair of parameter coordinates specifies the probabilities of C, S and R monocultures within 104 model generations (the coexistence 
criterion) over 100 model runs, with red representing a C monoculture, blue representing an S monoculture, and green representing an 
R monoculture. The intensity of the colour represents the probability that a monoculture occurs at all (‘Pr(mono)’); thus, two example 
legends are given, one for Pr(mono)  1 and one for Pr(mono)  0.5. The large, labeled, black regions represent parameter space in 
which three-strain coexistence occurs. The narrow, dark regions between monoculture regions (e.g. on the C–S border) represent regions 
where one strain is already extinct but the identity of the inevitable monoculture strain is not resolved within 104 generations.

2007, Vellend and Litrico 2008, Laird and Schamp 2008, 
2009, Rojas-Echenique and Allesina 2011). One important 
question that emerges from this work is whether any  
putative effects of space can be explained simply by the  
limited interactions experienced by spatially interacting 
agents, or, alternatively, whether space per se (i.e. inter
action specifically with nearest neighbours) is critical. Work 

on a simplified model of rock–paper–scissors competition 
suggests it is the latter (Szolnoki and Szabó 2004, Szabó 
et al. 2004, also see Zhang et al. 2009).

Here, I apply and extend these findings to Kerr et  al.’s 
(2002) model of non-transitive competition in colicino-
genic, susceptible, and resistant E. coli strains – a model  
that very closely matches empirical results in this system.  
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Figure 4. Probability of strain coexistence and monoculture (for dC  1/3, dS0  1/4, and a range of values of dR and t) for competition 
on random regular graphs with N  62 500 nodes and k  3, k   4, k  6, or k  8 neighbours per node. As shown in the legend,  
the colour at each pair of parameter coordinates specifies the probabilities of C, S and R monocultures within 104 model generations 
(the coexistence criterion) over 100 model runs, with red representing a C monoculture, blue representing an S monoculture, and  
green representing an R monoculture. The intensity of the colour represents the probability that a monoculture occurs at all (‘Pr(mono)’); 
in contrast to lattices (Fig. 3), on random regular graphs, monocultures always occur at all parameter combinations examined  
(i.e. no coexistence). Thus, only a single legend is provided (for Pr(mono)  1).

I show that while strain coexistence is often possible in (spa-
tial) lattice models, coexistence disappears when competi-
tion takes place on random regular graphs and even  
in small-world networks with any more than a very small 
degree of quenched randomness. In the spatial setting,  
local interactions and dispersal lead to the spontaneous 
emergence of a ‘fluid mosaic of patches’ that undergo a  
‘balanced chase’ (Kerr et  al. 2002); breaking down the  

spatial structure, even by a relatively small amount, leads to 
ever-larger oscillations in the C → R → S → C dynamics, 
eventually leading to a monoculture of one strain or another 
(with the victor depending on the relative competitive  
abilities of the C, S and R strains). Thus, these results sup-
port Kerr et al.’s assertion of the importance of space, and 
emphasize that the topology of interaction networks – not 
just their degree distribution – is important in determining 
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the same as in Fig. 2a.
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Figure 6. Two example time series when Q  Q50  0.00417. (The two runs use different small-world networks with the same degree of 
quenched randomness.) Parameter values: N  62 500, k  4, dC  1/3, dS0  1/4, dR  3/10, t  3/5; see Fig. 5. (a) Monoculture of C 
occurs within 12 141 generations. (b) Coexistence occurs for more than 105 generations.

coexistence. More generally, these findings complement the 
broader class of models that show how relaxing spatial  
network structure (e.g. by increasing mobility or mixing; 
Károlyi et al. 2005, Reichenbach et al. 2007) eventually leads 
to a collapse of diversity in many RPS systems. Further, the 
fact that only minor relaxation is needed to effect such a col-
lapse suggests that spatially mediated RPS coexistence  
is likely to be most important when relatively immobile 
competitors are confined to a stable substrate.

While lattice models and global- or local-mixing models 
have close analogues in real bacterial systems (e.g. bacteria 

cultured in static or well-mixed growth medium, respectively; 
Kerr et  al. 2002), random regular graphs and small-world 
networks probably do not. (Bacteria do not join Facebook.) 
Nevertheless, I argue that models involving these unrealistic 
interaction structures are still relevant to understanding real 
bacteria because they allow a vantage from which we can  
contrast interaction structures whose link to real bacteria  
is already established (e.g. Fig. 3 vs Fig. 4 and Fig. 7). Indeed, 
this is an interesting example of a situation where a model  
can illuminate aspects of a biological system that are difficult 
to understand by directly manipulating the system itself.
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Figure 7. Values of Q50 (for dC  1/3, dS0  1/4, and a range of values of dR and t) for competition on small-world networks with  
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Of course, many other systems, particularly those  
involving human interactions or technological artifacts,  
but also in non-human biological entities such as  
pathogen-transmission networks and the neural networks 
of C. elegans, do have small-world properties (Watts and 
Strogatz 1998). In light of this, an obvious extension of  
the results discussed here would be to test the prediction 
that such networks are increasingly unlikely to admit the 
coexistence of replicators (e.g. behavioural strategies, ideas, 
pathogens, etc.) playing variations of the rock–paper– 
scissors game as the degree of quenched randomness 
increases (Szolnoki and Szabó 2004, Szabó et al. 2004).
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